
ARTICLE IN PRESS
JOURNAL OF
SOUND AND
VIBRATION

Journal of Sound and Vibration 289 (2006) 130–147
0022-460X/$ -

doi:10.1016/j.

�Correspon
E-mail add
www.elsevier.com/locate/jsvi
Identification technique for nonlinear boundary conditions
of a circular plate

Akihiro Suzukia,�, Keisuke Kamiyaa, Kimihiko Yasudab

aDepartment of Mechanical Science and Engineering, Nagoya University, Furo-cho,

Chikusa-ku, Nagoya-shi, Aichi 4648603, Japan
bDepartment of Mechanical Engineering, Aichi Institute of Technology, 1247, Yachigusa, Yakusa-cho,

Toyota-shi, Aichi 4700392, Japan

Received 13 October 2003; received in revised form 20 January 2005; accepted 31 January 2005

Available online 12 July 2005
Abstract

As a basic study for developing an identification technique for boundary conditions of machines and
structures, a new technique for a circular plate is proposed. This technique has features that do not require
data measured on the boundary and is applicable to nonlinear boundary conditions. In the proposed
technique, the boundary is modelled by springs and dampers as well as effective mass and moment of
inertia. Then their characteristics are determined by using the analytical solution together with the
experimental data. Since the technique is based on the analytical solution, it is applicable to any structure,
provided that its analytical solution can be derived. Numerical simulation is conducted to show that the
procedure determines the boundary conditions accurately.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

To analyse the dynamic behaviour of machines and structures, numerical methods such as finite
element method are often used. Such numerical methods, however, do not always yield accurate
results. One of the reasons for this is its difficulty to specify the actual boundary conditions
accurately.
see front matter r 2005 Elsevier Ltd. All rights reserved.
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Nomenclature

a radius of the plate
Aimn;Bimn unknown constants to express

deflection in the form of analy-
tical solutions

C damping coefficient of the plate
E Young’s modulus of the plate
f excitation
f m measured excitation
Fr nonlinear restoring force of the

boundary
Fd nonlinear damping force of the

boundary
Fn;F

�
n nth order Fourier coefficients in

time of the excitation
Fcmn;Fsmn; . . . mth order Fourier coefficients in

the circumferential direction f of
F n;F

�
n

F̄ cmn; F̄ smn; . . . Hankel transform of
F cmn;F smn; . . .

Gcmn;Gsmn; . . . parts of deflection, particular
solutions

h thickness of the plate
I effective moment of inertia of the

boundary
Jm the Bessel function of the first

kind of order m

kw; aw; . . . functions as coefficients of re-
storing force in the form of the
polynomial

kwm; awm; . . . Fourier coefficients in the circum-
ferential direction of kw; aw; . . .

l1 truncation order of Fourier ser-
ies in time

l2 truncation order of Fourier ser-
ies in the circumferential direc-
tion

l3 truncation order of Fourier ser-
ies in the circumferential direc-
tion

Mr nonlinear restoring moment of
the boundary

Md nonlinear damping moment of
the boundary

ðr;fÞ polar coordinates for the plate
uimn; vimn real and imaginary parts of

JmðlinrÞ

wm measured deflection
w deflection
W n;W

�
n nth order Fourier coefficients in

time of deflection, homogeneous
solutions

Wcmn;Wsmn; . . . mth order Fourier coefficients in
the circumferential direction f of
W n;W

�
n

W̄cmn;W̄smn; . . . Hankel transform of
W cmn;wsmn; . . .

y inclination in the radial direction
m effective mass of the boundary
n Poisson’s ratio of the plate
r density of the plate
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As a means to grasp the characteristics of boundaries, experimental identification techniques
have attracted interests of engineers, and many techniques have been proposed. Among them are
techniques by Zhao et al. [1], Ren and Beards [2,3], Ahmadian et al. [4], Pabst and Hagedorn [5],
Xiang et al. [6], Takahashi [7] and Sanayei et al. [8], and Zhu and Huang [9]. All these techniques,
however, have a restriction that they can be applied only to the case in which boundary conditions
are linear. In practical cases, the boundary conditions often become nonlinear due to clearance,
friction, material properties and so on. Thus, techniques applicable to nonlinear boundary
conditions are desired. Sato et al. [10] proposed an identification technique for nonlinear
boundary conditions. This technique, however, requires data measured on the boundaries. There
are many cases in which measurement of data on the boundaries is difficult.
In previous papers [11–15], with the aim of developing an identification technique which is

applicable to nonlinear boundary conditions and does not require data measured on the
boundaries, the authors proposed techniques for one-dimensional structures. In this paper, as a
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continuation to the previous study, a technique applicable to two-dimensional structure is
developed. Here a circular plate is considered.
In the first part of this paper, as a preparation, analytical solution for a circular plate with

nonlinear boundary conditions is derived. Then an identification technique is proposed. In the
technique, the boundary is modelled by springs and dampers. Depending on the case, effective
mass and moment of inertia of the boundary are included in the model. Then their characteristics
are determined by using the analytical solution together with the experimental data. Since the
technique is based on the analytical solution, it is applicable to any structure, provided that its
analytical solution can be derived. Finally, numerical simulation is conducted to discuss the
applicability of the technique. In the simulation, responses of a circular plate are obtained from
the equations of motion numerically, and random numbers are added to them as noise. With these
data being regarded as experimental, identification of the boundary conditions is performed. In
this way, it is shown that the proposed technique yields accurate results.
2. Proposition of an identification technique

2.1. Formulation of the problem

A problem of identification of nonlinear boundary conditions for a linear circular plate is
considered. Dynamic properties of the plate, except the boundary conditions are assumed to be
known. In practice, it is often difficult to apply excitation to, or to measure responses on the
boundaries. So, in developing a technique, it is imposed that the excitation to and measurement
on the boundary are not required.
To formulate the problem, the boundary is modelled, as shown in Fig. 1, by springs and

dampers. The restoring force and moment produced by the springs are denoted by Fr and Mr, and
the damping force and moment produced by the dampers are denoted by Fd and Md . They can be
nonlinear functions of deflection w and inclination y or their velocities at the boundary. In some
cases, effective mass m and moment of inertia I of the boundary should be considered. In this case,
these quantities are included in the model. In the following, for generality, m and I are included.
Under the above assumptions, the problem of identification of boundary conditions is reduced to
µ, I f

φ
r

w

Fr Fd

Mr, Md

O

Fig. 1. Model of a circular plate.
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the problem of determining Fr, Mr, Fd , Md , m and I by use of the experimental data of responses
of the plate except for the boundary.

2.2. Derivation of the analytical solution

As a preparation for developing the identification procedure, the analytical solution of the
circular plate is derived.
A circular plate with radius a, thickness h, density r, Young’s modulus E and Poisson’s ratio n

is considered. At the boundary, the plate is supported as shown in Fig. 1. For this plate, the origin
O is chosen at the centre of the circular plate, and the polar coordinate system O� rf is
introduced. The plate is supposed to be subjected to an excitation f and viscous damping force
with damping coefficient C. Then the equation of motion of the plate is given by

Dr4w þ C
qw

qt
þ rh

q2w
qt2

¼ f , (1)

where

r2 ¼
q2

qr2
þ

q
rqr

þ
q2

r2qf2
; D ¼

Eh3

12ð1� n2Þ
. (2)

The boundary conditions at r ¼ a are given by

D
q
qr

ðr2wÞ þ
1� n

r

q
qr

q2w

rqf2

� �� �
¼ Fr þ Fd þ m

q2w
qt2

,

D
qy
qr

þ n
y
r
þ
q2w

qf2

� �� �
¼ �Mr � Md � I

q2y
qt2

, ð3Þ

where y ¼ qw=qr.
Here, it is assumed that the excitation is a periodic function with fundamental angular

frequency o. Then f is expressed in the form of Fourier series in time t as follows:

f ¼
X1
n¼0

Fnðr;fÞ cos not þ
X1
n¼1

F�
nðr;fÞ sin not. (4)

Since a circular plate is periodic in the circumferential direction with period 2p, Fnðr;fÞ and
F�

nðr;fÞ can be expressed in the form of Fourier series in angle f as follows

Fnðr;fÞ ¼
X1
m¼0

FcmnðrÞ cosmfþ
X1
m¼1

FsmnðrÞ sinmf,

F�
nðr;fÞ ¼

X1
m¼0

F�
cmnðrÞ cosmfþ

X1
m¼1

F�
smnðrÞ sinmf. ð5Þ

The quantities FcmnðrÞ, FsmnðrÞ, F�
cmnðrÞ and F�

smnðrÞ are known when f is specified concretely.
Now the steady-state oscillation to the excitation is considered. Since the boundary conditions

are nonlinear, various types of nonlinear oscillation may occur. Here, for simplicity, only a
periodic oscillation whose period is the same as that of the excitation is considered. When other
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types of oscillation such as sub-harmonic oscillation or combination resonance occur, one should
express the solution in an appropriate form for the oscillation. Now the solution is assumed to be
periodic, it can be expressed in the form of Fourier series in time as follows:

w ¼
X1
n¼0

W nðr;fÞ cos not þ
X1
n¼1

W �
nðr;fÞ sin not, (6)

where W nðr;fÞ and W �
nðr;fÞ are unknown functions. Similarly to Eq. (5), W nðr;fÞ and W �

nðr;fÞ
in Eq. (6) can be expressed in the form of Fourier series in f as follows

W nðr;fÞ ¼
X1
m¼0

W cmnðrÞ cosmfþ
X1
m¼1

W smnðrÞ sinmf,

W �
nðr;fÞ ¼

X1
m¼0

W �
cmnðrÞ cosmfþ

X1
m¼1

W �
smnðrÞ sinmf. ð7Þ

In the above expressions, W cmnðrÞ, W smnðrÞ, W �
cmnðrÞ and W �

smnðrÞ are unknown functions of r. In
order to determine W cmnðrÞ, W smnðrÞ, W �

cmnðrÞ and W �
smnðrÞ, Eqs. (4)–(7) are substituted into Eq.

(1), and in the resulting equations, coefficients of the terms cos not cosmf, cos not sinmf,
sin not cosmf and sin not sinmf on both sides are equated. Then one obtains

r4
mW cmnðrÞ þ b4nW �

cmnðrÞ � a4nW cmnðrÞ ¼
FcmnðrÞ

D
,

r4
mW smnðrÞ þ b4nW �

smnðrÞ � a4nW smnðrÞ ¼
FsmnðrÞ

D
,

r4
mW �

cmnðrÞ � b4nW cmnðrÞ � a4nW �
cmnðrÞ ¼

F�
cmnðrÞ

D
,

r4
mW �

smnðrÞ � b4nW smnðrÞ � a4nW �
smnðrÞ ¼

F�
smnðrÞ

D
, ð8Þ

where

r2
m ¼

d2

dr2
þ

d

rdr
�

m2

r2
; a4n ¼

rh

D
ðnoÞ2; b4n ¼

C

D
no. (9)

To obtain analytical solution of Eq. (8), first, the case for n ¼ 0 is considered. Then Eq. (8) is
reduced to

r4
mW cm0ðrÞ ¼

Fcm0ðrÞ

D
; r4

mW sm0ðrÞ ¼
Fsm0ðrÞ

D
. (10)

To solve Eq. (10), the homogeneous equations of Eq. (10) are considered. As shown in Ref. [16],
the homogeneous solutions, not singular at r ¼ 0, are given by

W cm0ðrÞ ¼ B1m0r
m þ B2m0r

mþ2; W sm0ðrÞ ¼ B3m0r
m þ B4m0r

mþ2, (11)

where Bim0 ði ¼ 1; 2; 3; 4Þ are arbitrary constants. The particular solutions of Eq. (10) are derived
later together with those for na0.
Next, the case for na0 is considered. To solve Eq. (8), first, the homogeneous equations of

Eq. (8) are considered. To obtain the homogeneous solutions, not singular at r ¼ 0, the form of
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the solution is assumed as

W cmnðrÞ ¼ AcmnJmðlnrÞ; W smnðrÞ ¼ AsmnJmðlnrÞ,

W �
cmnðrÞ ¼ A�

cmnJmðlnrÞ; W �
smnðrÞ ¼ A�

smnJmðlnrÞ, ð12Þ

where Jm is the Bessel function of the first kind of order m, and Acmn, Asmn, A�
cmn, A�

smn

and ln are unknown constants. Substituting Eq. (12) into the homogeneous equations of Eq. (8)
yields

ðl4n � a4nÞAcmnJmðlnrÞ þ b4nA�
cmnJmðlnrÞ ¼ 0,

� b4nAcmnJmðlnrÞ þ ðl4n � a4nÞA
�
cmnJmðlnrÞ ¼ 0,

ðl4n � a4nÞAsmnJmðlnrÞ þ b4nA�
smnJmðlnrÞ ¼ 0,

� b4nAsmnJmðlnrÞ þ ðl4n � a4nÞA
�
smnJmðlnrÞ ¼ 0. ð13Þ

The condition for Eq. (13) to have non-zero Acmn, Asmn, A�
cmn and A�

smn is given by

l4n � a4n b4n
�b4n l4n � a4n

�����
����� ¼ 0. (14)

Solving Eq. (14) determines the constants ln. In the following, they are denoted as 	l1n,
	l2n, 	l3n and 	l4n. For each lin ði ¼ 1; 2; 3; 4Þ, the ratios of A�

cmn to Acmn and A�
smn to Asmn

are determined uniquely. Thus, the homogeneous solutions not singular at r ¼ 0 are given
as follows:

W cmnðrÞ ¼ Acmn1Jmðl1nrÞ þ Acmn2Jmðl2nrÞ þ Acmn3Jmðl3nrÞ þ Acmn4Jmðl4nrÞ,

W smnðrÞ ¼ Asmn1Jmðl1nrÞ þ Asmn2Jmðl2nrÞ þ Asmn3Jmðl3nrÞ þ Asmn4Jmðl4nrÞ,

W �
cmnðrÞ ¼ �jAcmn1Jmðl1nrÞ � jAcmn2Jmðl2nrÞ þ jAcmn3Jmðl3nrÞ þ jAcmn4Jmðl4nrÞ,

W �
smnðrÞ ¼ �jAsmn1Jmðl1nrÞ � jAsmn2Jmðl2nrÞ þ jAsmn3Jmðl3nrÞ þ jAsmn4Jmðl4nrÞ, ð15Þ

where Acmni and Asmni ði ¼ 1; 2; 3; 4Þ are arbitrary constants. In general, lin ði ¼ 1; 2; 3; 4Þ are
complex, so are JmðlinrÞ. In order to express the solution W cmnðrÞ, W smnðrÞ, W �

cmnðrÞ and W �
smnðrÞ

in Eq. (15) in terms of real quantities, JmðlinrÞ are expressed in the form

Jmðl1nrÞ ¼ u1mnðrÞ þ jv1mnðrÞ; Jmðl2nrÞ ¼ u2mnðrÞ � jv2mnðrÞ,

Jmðl3nrÞ ¼ u1mnðrÞ � jv1mnðrÞ; Jmðl4nrÞ ¼ u2mnðrÞ þ jv2mnðrÞ. ð16Þ

Substituting Eq. (16) into Eq. (15) yields

W cmnðrÞ ¼ B1mnu1mnðrÞ þ B2mnv1mnðrÞ þ B3mnu2mnðrÞ þ B4mnv2mnðrÞ,

W smnðrÞ ¼ B5mnu1mnðrÞ þ B6mnv1mnðrÞ þ B7mnu2mnðrÞ þ B8mnv2mnðrÞ,

W �
cmnðrÞ ¼ �B2mnu1mnðrÞ þ B1mnv1mnðrÞ þ B4mnu2mnðrÞ � B3mnv2mnðrÞ,

W �
smnðrÞ ¼ �B6mnu1mnðrÞ þ B5mnv1mnðrÞ þ B8mnu2mnðrÞ � B7mnv2mnðrÞ, ð17Þ

where Bimn ði ¼ 1; 2; . . . ; 8Þ are arbitrary constants.
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Now the particular solutions of Eqs. (8) and (10) are considered. In order to obtain them,
Hankel transform is used [17]. Applying the Hankel transform to Eq. (8), one has

ðx4 � a4nÞW cmnðxÞ þ b4nW
�

cmnðxÞ ¼
FcmnðxÞ

D
,

ðx4 � a4nÞW smnðxÞ þ b4nW
�

smnðxÞ ¼
FsmnðxÞ

D
,

� b4nW cmnðxÞ þ ðx4 � a4nÞW
�

cmnðxÞ ¼
F

�

cmnðxÞ
D

,

� b4nW smnðxÞ þ ðx4 � a4nÞW
�

smnðxÞ ¼
F

�

smnðxÞ
D

, ð18Þ

where W cmnðxÞ;W smnðxÞ; . . . and FcmnðxÞ;FsmnðxÞ; . . . are Hankel transform of W cmnðrÞ;W smnðrÞ; . . .
and FcmnðrÞ;FsmnðrÞ; . . .. Solving Eq. (18) for W cmnðxÞ, W smnðxÞ, W

�

cmnðxÞ and W
�

smnðxÞ, and
performing the inverse Hankel transform yields the particular solutions of Eq. (8) as follows

GcmnðrÞ ¼
1

D

Z 1

0

ðx4 � a4nÞFcmnðxÞ � b4nF
�

cmnðxÞ

ðx4 � a4nÞ
2
þ b8n

xJnðrxÞdx,

GsmnðrÞ ¼
1

D

Z 1

0

ðx4 � a4nÞFsmnðxÞ � b4nF
�

smnðxÞ

ðx4 � a4nÞ
2
þ b8n

xJnðrxÞdx,

G�
cmnðrÞ ¼

1

D

Z 1

0

b4nFcmnðxÞ þ ðx4 � a4mÞF
�

cmnðxÞ

ðx4 � a4mÞ
2
þ b8m

xJnðrxÞdx,

G�
smnðrÞ ¼

1

D

Z 1

0

b4nFsmnðxÞ þ ðx4 � a4nÞF
�

smnðxÞ

ðx4 � a4nÞ
2
þ b8n

xJnðrxÞdx, ð19Þ

where GcmnðrÞ, GsmnðrÞ, G�
cmnðrÞ and G�

smnðrÞ are used instead of W cmnðrÞ, W smnðrÞ, W �
cmnðrÞ and

W �
smnðrÞ. Setting n ¼ 0 in Eq. (19) yields the particular solutions of Eq. (10).
Now the general solutions of Eqs. (8) and (10) are given. For n ¼ 0, combining Eqs. (11) and

(19), one obtains

W cm0ðrÞ ¼ B1m0r
m þ B2m0r

mþ2 þ Gcm0ðrÞ,

W sm0ðrÞ ¼ B3m0r
m þ B4m0r

mþ2 þ Gsm0ðrÞ. ð20Þ

For na0, combining Eqs. (17) and (19), one obtains

W cmnðrÞ ¼ B1mnu1mnðrÞ þ B2mnv1mnðrÞ þ B3mnu2mnðrÞ þ B4mnv2mnðrÞ þ GcmnðrÞ,

W smnðrÞ ¼ B5mnu1mnðrÞ þ B6mnv1mnðrÞ þ B7mnu2mnðrÞ þ B8mnv2mnðrÞ þ GsmnðrÞ,

W �
cmnðrÞ ¼ �B2mnu1mnðrÞ þ B1mnv1mnðrÞ þ B4mnu2mnðrÞ � B3mnv2mnðrÞ þ G�

cmnðrÞ,

W �
smnðrÞ ¼ �B6mnu1mnðrÞ þ B5mnv1mnðrÞ þ B8mnu2mnðrÞ � B7mnv2mnðrÞ þ G�

smnðrÞ. ð21Þ

In Eqs. (20) and (21), the coefficients Bimn ði ¼ 1; 2; . . . ; 8Þ are determined by using the boundary
conditions Eq. (3). Substituting Eqs. (20) and (21) into Eqs. (7),, (6) and (3) in this order and
applying the harmonic balance procedure [18], one obtains the simultaneous nonlinear equations
with respect to Bimn. Solving the resulting equations yields Bimn.



ARTICLE IN PRESS

A. Suzuki et al. / Journal of Sound and Vibration 289 (2006) 130–147 137
Now all of the unknown quantities have been obtained, the deflection w is determined in the
form Eq. (6).

2.3. Proposition of an identification technique

Based on the analytical solution obtained in the previous section, an identification technique is
developed.
The first step is to apply the periodic excitation of the form Eq. (4) and to measure the

excitation and the steady-state deflection. The necessary number of the measurement points for
deflection ðri;fjÞ is discussed later. The number of the measurement points of the excitation are
chosen so that the distribution of the excitation can be determined. When the distribution is
known in advance, as in the case of a concentrated force, one point is enough for measurement of
the excitation. In the following, such a case is considered.
The next step is to express the deflection in the analytical form for the purpose of obtaining the

response at the boundary. The measured excitation f m and deflection wmðri;fjÞ are expressed, as
Eqs. (4) and (6), in Fourier series in time domain of the form

Xl1

n¼0

Fn cos not þ
Xl1

n¼1

F�
n sin not ¼ f m (22)

and

Xl1

n¼0

W nðri;fjÞ cos not þ
Xl1

n¼1

W �
nðri;fjÞ sin not ¼ wmðri;fjÞ, (23)

where l1 denotes the truncation order. The coefficients in Eqs. (22) and (23) are determined, for
example, by the fast Fourier transform algorithm. The determined Fourier coefficients in Eq. (22)
and the knowledge of the distribution of the excitation yield the Hankel transform of Fcmn, Fsmn,
F�

cmn and F�
smn appeared in Eq. (19) in the previous section. Then, one can obtain the particular

solutions GcmnðriÞ, GsmnðriÞ, G�
cmnðriÞ and G�

smnðriÞ by Eq. (19). On the other hand, the Fourier
coefficients W nðri;fjÞ and W �

nðri;fjÞ in Eq. (23) can be expressed by the Fourier series in angle f
of the form

Xl2

m¼0

W cmnðriÞ cosmfj þ
Xl2

m¼1

W smnðriÞ sinmfj ¼ W nðri;fjÞ,

Xl2

m¼0

W �
cmnðriÞ cosmfj þ

Xl2

m¼1

W �
smnðriÞ sinmfj ¼ W �

nðri;fjÞ, ð24Þ

where l2 denotes the truncation order. The number of the unknown quantities W cmnðriÞ, W smnðriÞ,
W �

cmnðriÞ and W �
smnðriÞ for fixed n and ri is 4l2 þ 2. Since Eq. (24) contains two equations, choosing

2l2 þ 1 or more measurement points in the circumferential direction, one can solve Eq. (24) for the
unknown quantities by the least-squares method or by the fast Fourier transform algorithm.
The obtained particular solutions GcmnðriÞ, GsmnðriÞ, G�

cmnðriÞ and G�
smnðriÞ, and the Fourier

coefficients W cmnðriÞ, W smnðriÞ, W �
cmnðriÞ and W �

smnðriÞ must satisfy the relationship Eqs. (20) and
(21). Substituting them into Eqs. (20) and (21), one obtains sets of equations with respect to the
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arbitrary constants Bimn. These equations are written as, for the case n ¼ 0,

B1m0r
m
i þ B2m0r

mþ2
i ¼ W cm0ðriÞ � Gcm0ðriÞ,

B3m0r
m
i þ B4m0r

mþ2
i ¼ W sm0ðriÞ � Gsm0ðriÞ, ð25Þ

and for the case na0,

B1mnu1mnðriÞ þ B2mnv1mnðriÞ þ B3mnu2mnðriÞ þ B4mnv2mnðriÞ ¼ W cmnðriÞ � GcmnðriÞ,

B5mnu1mnðriÞ þ B6mnv1mnðriÞ þ B7mnu2mnðriÞ þ B8mnv2mnðriÞ ¼ W smnðriÞ � GsmnðriÞ,

� B2mnu1mnðriÞ þ B1mnv1mnðriÞ þ B4mnu2mnðriÞ � B3mnv2mnðriÞ ¼ W �
cmnðriÞ � G�

cmnðriÞ,

� B6mnu1mnðriÞ þ B5mnv1mnðriÞ þ B8mnu2mnðriÞ � B7mnv2mnðriÞ ¼ W �
smnðriÞ � G�

smnðriÞ. ð26Þ

The number of the unknown constants Bimn is 4 in Eq. (25) and 8 in Eq. (26) for a fixed n, while
the number of equations is 2 in Eq. (25) and 4 in Eq. (26). Thus, choosing two or more
measurement points in radial direction, one can solve Eqs. (25) and (26) for Bimn by the least-
squares method.
In the above, data of deflection of the plate were used to determine Bimn. In some cases, it is

possible to obtain data of inclination or strain of the plate in addition to those of deflection. In
that case use of these data improves accuracy.
Now the constants Bimn and the particular solutions GcmnðriÞ, GsmnðriÞ, G�

cmnðriÞ and G�
smnðriÞ have

been determined, deflection w can be written as a function of t, r and f in the form of Eq. (6). In
this expression, setting r ¼ a gives the deflection at the boundary.
The final step of the identification procedure is to determine the characteristics of the unknown

functions Fr, Fd , Mr, Md , m and I . As shown in Section 2.1, Fr and Mr are nonlinear functions of
deflection w and inclination y ¼ qw=qr, while Fd and Md are nonlinear functions of their
velocities _w and _y. Hence in determining Fr, Fd , Mr and Md , it is assumed that they are given by
polynomials of the form

Fr ¼ kwðfÞw þ awðfÞw2 þ bwðfÞw
3 þ 
 
 
 ,

Fd ¼ cwðfÞ _w þ BwðfÞ _w
2 þ ZwðfÞ _w

3 þ 
 
 
 ,

Mr ¼ kyðfÞyþ ayðfÞy
2
þ byðfÞy

3
þ 
 
 
 ,

Md ¼ cyðfÞ_yþ ByðfÞ_y
2
þ ZyðfÞ_y

3
þ 
 
 
 , ð27Þ

where kwðfÞ; awðfÞ; . . . ; kyðfÞ; ayðfÞ; . . . are unknown functions. Since these unknown functions as
well as the effective mass m ¼ mðfÞ and moment of inertia I ¼ IðfÞ are periodic functions in f
with period 2p, they can be expressed in Fourier series:

kwðfÞ ¼
Xl3

m¼0

kwm cosmfþ
Xl3

m¼1

k�
wm sinmf,

awðfÞ ¼
Xl3

m¼0

awm cosmfþ
Xl3

m¼1

a�wm sinmf,

..

.



ARTICLE IN PRESS

A. Suzuki et al. / Journal of Sound and Vibration 289 (2006) 130–147 139
mðfÞ ¼
Xl3

m¼0

mm cosmfþ
Xl3

m¼1

m�m sinmf,

IðfÞ ¼
Xl3

m¼0

Im cosmfþ
Xl3

m¼1

I�m sinmf, ð28Þ

where l3 (usually l3pl2) denotes the truncation order, and kwm; awm; . . . are unknown parameters.
Thus the problem of identification is finally reduced to determination of these parameters.
To determine them, the deflection w on the boundary expressed in the form of Eq. (6) and Eqs.

(27) and (28) are substituted into Eq. (3). Based on the harmonic balance procedure, the
coefficients of terms cos not cosmf, cos not sinmf, sin not cosmf and sin not sinmf in both
sides of the resulting equations are equated. Then simultaneous linear equations with respect to
the unknown parameters are obtained:

½A�fkw0 aw0 
 
 
 m�l3 I�l3g
T ¼ fbg, (29)

where ½A� is the matrix of coefficients of the unknown parameters and fbg consists of the left-hand
side of Eq. (3). Solving Eq. (29) by the least-squares method determines the unknown parameters.
If necessary one can increase the number of Eq. (29) by changing the magnitude, frequency or
position of the excitation and repeating the above steps. In general, it is expected that as the
number of equations increases, the results become more accurate.
3. Numerical simulation

To show applicability of the proposed technique, numerical simulation is conducted. First,
dynamic response is calculated by solving the equations of motion of a plate whose parameters are
given appropriately. Then using the data thus obtained, identification is performed. Finally, the
obtained results are compared to the original values of the parameters used for calculation of the
response.
3.1. Calculation of the dynamic response

A circular plate whose material properties and dimensions are given in Table 1 is considered.
Characteristics of the restoring force and moment at the boundary is supposed to be given by

Fr ¼ kwðfÞw þ bwðfÞw
3; Mr ¼ kyðfÞyþ byðfÞy

3,

Fd ¼ cwðfÞ _w; Md ¼ cyðfÞ_y, ð30Þ

where

cwðfÞ ¼ cw0; cyðfÞ ¼ cy0,

kwðfÞ ¼ kw0 þ k�
w1 sinf; kyðfÞ ¼ ky0 þ k�

y1 sinf,

bwðfÞ ¼ bw0 þ b�w1 sinf; byðfÞ ¼ by0 þ b�y1 sinf. ð31Þ
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Table 1

Material properties and dimensions of the circular plate

Radius a ¼ 3:2� 10�1 m

Thickness h ¼ 1:0� 10�3 m

Young’s modulus E ¼ 2:06� 1011 Pa

Density r ¼ 7:84� 103 kg=m3

Damping C ¼ 5:0� 10�1 Ns=m3

Poisson’s ratio n ¼ 3:0� 10�1

Table 2

Parameters of the boundary

Parameters with respect to deflection Parameters with respect to inclination

m0 1:0� 10�1 (kg) I0 5:0� 10�3 (kgm3)

m1 0:0 (kg) I1 0:0 (kgm3)

m�1 3:0� 10�2 (kg) I�1 1:2� 10�3 (kgm3)

cw0 2:0 (Ns/m) cy0 3:0 (Nms/rad3)

cw1 0:0 (Ns/m) cy1 0:0 (Nms/rad3)

c�w1 0:0 (Ns/m) c�y1 0:0 (Nms/rad3)

kw0 1:0� 104 (N/m) ky0 6:0� 102 (Nm/rad)

kw1 0:0 (N/m) ky1 0:0 (Nm/rad)

k�
w1 2:5� 103 (N/m) k�

y1 1:8� 102 (Nm/rad)

aw0 0:0 (N/m2) ay0 0:0 (Nm/rad2)

aw1 0:0 (N/m2) ay1 0:0 (Nm/rad2)

a�w1 0:0 (N/m2) a�y1 0:0 (Nm/rad2)

bw0 4:5� 109 (N/m3) by0 6:0� 107 (Nm/rad3)

bw1 0:0 (N/m3) by1 0:0 (Nm/rad3)

b�w1 1:5� 109 (N/m3) b�y1 1:8� 107 (Nm/rad3)
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The effective mass mðfÞ and moment of inertia IðfÞ are also supposed to be given by

mðfÞ ¼ m0 þ m�1 sinf; IðfÞ ¼ I0 þ I�1 sinf. (32)

Values of the parameters in Eqs. (31) and (32) are shown in Table 2. Eqs. (31) and (32) imply that
in this simulation a case is considered in which characteristics except the damping are almost
uniform, but have fluctuations which are approximated by trigonometric functions in the
circumferential direction.
As the excitation, concentrated harmonic force applied at point ðrf ;ff Þ

f ¼
F ex

rf

dðr � rf Þdðf� ff Þ cosot, (33)

is considered. In Eq. (33), d is Dirac’s delta function, and values of the parameters are given as

F ex ¼ 0:8 ½N�; rf ¼ 0:2 ½m�; ff ¼ 3=2p.
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for identification.
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Twelve points shown in Fig. 2 are chosen as the measurement points. Response of the plate is
obtained following the analysis procedure in Section 2.2. In Eq. (6), terms for n ¼ 1 and 3 are
retained since the excitation is harmonic and the nonlinearity is cubic. In Eq. (7), terms for m ¼ 0
and 1 are retained since, as shown below, data in the resonance of the first and second modes are
used for identification. For reference, the first and second linear modes of the plate are shown in
Fig. 3. In this simulation, total of 24 unknown constants Bimn ði ¼ 1; 2; . . . ; 8Þ in Eq. (21) are
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derived by solving a set of simultaneous nonlinear equations. This set of equations was solved by
the subroutine of Brent method [19]. Thus the deflection of the plate was obtained.
For identification data at six frequencies 12.50, 12.75, 13.00, 19.50, 19.75 and 20.00Hz are used.

These frequencies are near to the resonance frequencies of the first or second modes as shown in
Fig. 4, which shows the resonance curve for the component of the fundamental frequency at the
measurement point ðr1; 0Þ. Hence, data at these frequencies are expected to contain information
about the boundary conditions including the nonlinearity. As examples of time histories of the
deflection data at the measurement points ðri; 0Þ ði ¼ 1; 2; 3Þ at 13Hz are shown in Fig. 5. In
identification, these data were sampled at 1024Hz, and 8192 points of data were used.
3.2. Application of the identification technique

3.2.1. Case in which data is not contaminated with noise
In this section, a case in which data are not contaminated with noise is considered. Following

the identification procedure in Section 2.3, first, Fourier coefficients of Eqs. (22) and (23) are
determined by the fast Fourier transform. Fig. 6 shows the Fourier spectrums of the data shown
in Fig. 5. From Fig. 6, one can see that retaining in Eqs. (22) and (23) the terms from the first to
the third order is enough.
Second, Fourier coefficients in Eq. (23) is expanded into Fourier series in angle f, as the form of

Eq. (24). Since data near to the resonance of the first and second modes are being used, the terms
from the zeroth to the first order in Eq. (24) are retained. The coefficients in Eq. (24) are
determined by the fast Fourier transform.
Third, the arbitrary constants Bimn in Eq. (26) are determined. In this case, for each frequency

of the excitation, the number of Bimn becomes 36, while the number of equations of Eq. (26)
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becomes 54 because 3 measurement points are chosen in the radial direction. So Eq. (26) can be
solved by the least-squares method. Using the obtained Bimn, one can have the deflection at the
boundary in the form of Eq. (6). As an example, time history of the deflection at the boundary for
f ¼ 0 at frequency 13Hz is shown in Fig. 7 by dashed line. In the same figure, the deflection at the
same point obtained from the equations of motion is plotted by solid line. It is seen that both data
agree very well.
Fourth, the forms of the unknown functions Fr, Fd , Mr and Md are assumed. Here they are

assumed in the polynomials of the form

Fr ¼ kwðfÞw þ awðfÞw2 þ bwðfÞw
3; Mr ¼ kyðfÞyþ ayðfÞy

2
þ byðfÞy

3,

Fd ¼ cwðfÞ _w; Md ¼ cyðfÞ_y. ð34Þ

The coefficients of Eq. (34) are assumed in the Fourier series of the form

cwðfÞ ¼ cw0 þ cw1 cosfþ c�w1 sinf; cyðfÞ ¼ cy0 þ cy1 cosfþ c�y1 sinf,

kwðfÞ ¼ kw0 þ kw1 cosfþ k�
w1 sinf; kyðfÞ ¼ ky0 þ ky1 cosfþ k�

y1 sinf,

awðfÞ ¼ aw0 þ aw1 cosfþ a�w1 sinf; ayðfÞ ¼ ay0 þ ay1 cosfþ a�y1 sinf,

bwðfÞ ¼ bw0 þ bw1 cosfþ b�w1 sinf; byðfÞ ¼ by0 þ by1 cosfþ b�y1 sinf. ð35Þ
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Table 3

Identified parameters without noise

Parameters Original Identified Parameters Original Identified

m0 1:0� 10�1 1:000� 10�1 I0 5:0� 10�3 5:000� 10�3

m1 0:0� 10�1 0:000� 10�1 I1 0:0� 10�3 0:000� 10�3

m�1 0:3� 10�1 0:300� 10�1 I�1 1:2� 10�3 1:200� 10�3

cw0 2:0 2:000 cy0 3:0 3:000
cw1 0:0 0:000 cy1 0:0 0:000
c�w1 0:0 0:000 c�y1 0:0 0:000
kw0 1:0� 104 1:000� 104 ky0 6:0� 102 6:000� 102

kw1 0:0� 104 0:000� 104 ky1 0:0� 102 0:000� 102

k�
w1 0:25� 104 0:250� 104 k�

y1 1:8� 102 1:800� 102

aw0 0:0 0:000 ay0 0:0 0:000
aw1 0:0 0:000 ay1 0:0 0:000
a�w1 0:0 0:000 a�y1 0:0 0:000
bw0 4:5� 109 4:500� 109 by0 6:0� 107 6:000� 107

bw1 0:0� 109 0:000� 109 by1 0:0� 107 0:000� 107

b�w1 1:5� 109 1:500� 109 b�y1 1:8� 107 1:800� 107
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Similarly, effective mass and moment of inertia are assumed in the Fourier series of the form

mðfÞ ¼ m0 þ m1 cosfþ m�1 sinf; IðfÞ ¼ I0 þ I1 cosfþ I�1 sinf. (36)

Finally, the unknown parameters are determined. Their number is 30, while the number of
equations with respect to the unknown parameters is 36 for each frequency of the excitation. Since
six frequencies have been chosen, the total number of the equations is 216. Thus the unknown
parameters are determined by the least-squares method.
The determined parameters are shown in the column ‘identified’ in Table 3. In the same table,

original values of the parameters are shown in the column ’original’ for comparison. As seen in
the table, the values of the determined parameters agree very well with those of the original
parameters.

3.2.2. Case in which data are contaminated with noise
In this section, a case in which data are contaminated with noise is considered. Here, random

numbers are added to the time histories as noise. In the following, the results are shown for the
case in which the standard deviation of the random number is 2.5% of the average of the
amplitudes at the measurement points. As an example, time histories obtained by adding random
numbers to those in Fig. 5 are shown in Fig. 8 . Using these data, identification is performed. The
conditions, such as the excitation or measurement points, and the assumptions, such as the form
of the unknown functions Eqs. (34)–(36), for identification are the same as those in the previous
sections.
The identified parameters are shown in the column ‘identified’ in Table 4. As seen in the table,

the identified parameters except by and I are acceptable, though the accuracy is worse than that in
the previous case. To evaluate the accuracy of the identified results in terms of response, the
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Table 4

Identified parameters with noise

Parameters Original Identified Parameters Original Identified

m0 1:0� 10�1 0:960� 10�1 I0 5:0� 10�3 4:561� 10�3

m1 0:0� 10�1 �0:022� 10�1 I1 0:0� 10�3 �0:113� 10�3

m�1 0:3� 10�1 0:298� 10�1 I�1 1:2� 10�3 1:196� 10�3

cw0 2:0 2:039 cy0 3:0 2:951
cw1 0:0 �0:016 cy1 0:0 �0:064
c�w1 0:0 �0:026 c�y1 0:0 �0:037
kw0 1:0� 104 1:004� 104 ky0 6:0� 102 5:877� 102

kw1 0:0� 104 0:002� 104 ky1 0:0� 102 �0:449� 102

k�
w1 0:25� 104 0:249� 104 k�

y1 1:8� 102 1:644� 102

aw0 0:0� 106 �0:017� 106 ay0 0:0� 105 0:104� 105

aw1 0:0� 106 0:017� 106 ay1 0:0� 105 0:310� 105

a�w1 0:0� 106 0:022� 106 a�y1 0:0� 105 0:255� 105

bw0 4:5� 109 4:412� 109 by0 6:0� 107 6:523� 107

bw1 0:0� 109 �0:064� 109 by1 0:0� 107 4:316� 107

b�w1 1:5� 109 1:513� 109 b�y1 1:8� 107 2:932� 107
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resonance curve is obtained using the identified parameters. The results are shown in Fig. 9. In
this figure, solid and dashed lines indicate amplitude of stable and unstable response obtained
from the original parameters, and circles indicate amplitude estimated from the identified
parameters. The figure shows that in terms of response the identified parameters are accurate
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enough. This in turn implies that the parameters which do not have influence on the response are
difficult to determine by the proposed technique.
4. Conclusions

As a basic study for developing an experimental identification technique applicable to nonlinear
boundary conditions of a two-dimensional structure, a circular plate has been considered. A
technique for it has been proposed. In the proposed technique, the boundary is modelled by
springs, dampers, effective masses and moments of inertia. Their characteristics are determined by
use of the data of steady-state deflection. By numerical simulation, it has been confirmed that the
proposed technique determines the boundary conditions well.
Appendix

For a function hðrÞ, its Hankel transform of order m, h̄mðxÞ, is defined by

h̄mðxÞ ¼
Z 1

0

rhðrÞJmðxrÞdr.

Following the definition, it is shown that Hankel transform of the derivative r2
mhðrÞ is given

by �x2hðxÞ.
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